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Abstract

A concurrent Atomistic to Continuum (AtC) coupling method is presented in this
paper. The problem domain is decomposed into an atomistic sub-domain where fine
scale features need to be resolved, a continuum sub-domain which can adequately
describe the macroscale deformation and an overlap interphase sub-domain that has a
blended description of the two. The problem is formulated in terms of equilibrium
equations with a blending between the continuum stress and the atomistic force in the
interphase. Coupling between the continuum and the atomistics is established by
imposing constraints between the continuum solution and the atomistic solution over
the interphase sub-domain in a weak sense. Specifically, in the examples considered
here, the atomistic domain is modeled by the Aluminum Embedded Atom Method
(EAM) inter-atomic potential developed by Ercolessi and Adams [13] and the
continuum domain is a linear elastic model consistent with the EAM potential. The
formulation is subjected to patch tests to demonstrate its ability to represent the
constant strain modes and the rigid body modes. Numerical examples are illustrated
with comparisons to reference atomistic solution.
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1 Introduction

Engineers and scientists have realized the importance of analyzing all the relevant scales
together and linking them properly for the problems that have features or phenomena
of interest in different spatial and temporal scales. It has become crucial to understand
the relationship of processes taking place across various length and time scales for the
advancement of various fields like material science [22], pharmaceutical drugs and
biology, micro and nano technology [26] etc. The macroscopic behavior of systems are
predicted from continuum based theory and computational models, which traditionally
have phenomenological constitutive relationships. But the macroscopic behavior is
inherently governed by the physics taking place on multiple unresolved scales.

Multiscale modeling and simulation techniques can be broadly classified into two
categories as sequential multiscale methods and concurrent multiscale methods. In
sequential multiscale methods fine scale information is averaged and introduced into
coarse scale models in the form of constitutive relations. In concurrent methods two or
more models are simultaneously resolved in different regions of a problem domain.

Macroscopic phenomena of interest such as fracture and fatigue of materials are a
result of the physical processes occurring in the atomistic scale such as dislocations,
voids and interstitials or even quantum scale processes such as reactions leading to
corrosion. Disparity in the length scales between such coarse scale and fine scale
phenomena can exceed 1010. It is prohibitive in terms of computational cost to model
coarse scale phenomena from fine scale models alone. Often only localized areas of a
vast problem domain need fine scale models to resolve the complicated fine scale
processes while the rest of problem domain can be modeled with a coarse scale model.
Concurrent multiscale methods are an effective tool to handle such situations. The
focus here is on a concurrent method that couples a continuum model with an atomistic
model.

Most of the work in concurrent modeling techniques is by coupling molecular statics
or molecular dynamics with a continuum model. Following is a brief review of such
concurrent modeling techniques available in the literature. Combined finite element and
atomistic models to study crack propagation in crystals [23][19] are some of the earliest
works of atomistic/continuum coupling. A reference cited frequently is the
Macroscopic, Atomistic, Ab-initio Dynamics (MAAD) [2][6] where crack propagation in
silicon was simulated with a tight-binding quantum mechanics model to represent bond
breaking at the crack tip, molecular dynamics around the crack tip to model processes
such as dislocation loop formation and a finite element model farther away from the
crack to capture macroscopic deformation. The quasi-continuum (QC) method
[32][22][21] resolves the regions close to defects like dislocations, grain boundary, etc.
with molecular mechanics, while farther away from the defect region atoms are
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constrained to move in groups by the finite element shape functions and mesh, thereby
greatly reducing the degrees of freedom in a problem. Finite-temperature
quasicontinuum [12] is developed as a coarse-grained alternative to molecular dynamics
for crystalline solids at constant temperature by using a combination of statistical
mechanics and finite element interpolation functions. Coarse-grained molecular
dynamics [27][28] uses a coarse graining procedure based on statistical mechanics to
derive equations of motion for a finite element mesh from the equations of motion of
molecular dynamics. The bridging domain method [5][34] has been used to couple
continuum to atomistics through an overlap region and study shock wave propagation
from molecular region to the continuum region. Bridging Scale Method (BSM) has
been adopted by Liu et.al [33][24] where the solution is decomposed into fine scale and
coarse scale parts and a projection operator is used to decouple the kinetic energy of
the atomistic and the continuum sub-domains. A concurrent multiscale approach based
on multigrid principles was introduced in [15]. The Arlequin modeling technique [11]
that has been proposed to locally modify a mathematical model to capture the required
physics can be potentially used for concurrent multiscale problems.

A hybrid domain decomposition concurrent multiscale formulation is proposed in
which two or more mathematical models with disparate scales (continuum and
atomistic models specifically) coexist in different parts of a problem domain. The
models interact through an overlap interphase sub-domain. The problem is formulated
in terms of equilibrium equations for the whole problem domain; the atomistic force is
blended with the continuum stress in the overlap interphase. Constraints are imposed
between the degrees of freedom of the interacting models in the form of a weak
compatibility in overlap interphase sub-domains. Section 2 gives the details of the
concurrent AtC coupling method. Patch tests are devised to test the correctness of the
method, which is discussed in section 3. Section 4 illustrates numerical examples. The
last section gives a summary of the different sections. There are two distinguishing
features of the proposed method. First, the problem is formulated in terms of an
equilibrium equation that has a blend of the atomistic force and the continuum stress in
the interphase. Second, coupling between the continuum and the atomistic models is
through a weak compatibility of solution in an overlap interphase sub-domain.

2 Problem formulation

2.1 Strong and weak form equilibrium equations

Consider the problem domain Ω in figure 1 subdivided into three sub-domains denoted
as ΩC , ΩA and ΩI such that Ω = ΩC ∪ ΩA ∪ ΩI ; ΩC ∩ ΩI = ∅, ΩC ∩ ΩA = ∅,
ΩA ∩ ΩI = ∅. ΩC and ΩA are the sub-domains where a continuum and an atomistic
descriptions are defined respectively; ΩI is an overlap domain or an interphase where a
combination of the atomistic and the continuum descriptions is defined. Dummy atoms
shown in figure 1 are present in a region rC distance away from ΓCI , where rC is the
cutoff distance of the inter-atomic potential. These dummy atoms are necessary to
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Figure 1: Hybrid atomistic-continuum domain

compute forces correctly on the atoms in ΩI close to ΓCI .

In the continuum sub-domain ΩC the governing equilibrium equation is

σij,j + bi = 0 x ∈ ΩC (1)

along with appropriate boundary conditions, constitutive and kinematic equations.
Lower case Roman subscripts i, j, . . . denote coordinates in the deformed
configuration or current configuration, and comma in equation 1 denotes derivative
with respect to space. Summation convention over the repeated indices is employed. σij

and bi are the Cauchy stress tensor and the body force per unit volume respectively.
Lower case roman subscripts denote coordinates in the deformed spatial configuration,
summation convention over the repeated indices is employed.

In the atomistic domain ΩA the equilibrium equation can be written as

nA
∑

α

{fiα + biα}δ(x − xα) = 0 x ∈ ΩA (2)

where fiα is the sum of the internal forces acting on an atom α. biα is the body force
acting on the atom α. Greek letters α, β, . . . denote atoms and are used as subscripts
to represent the quantities related to atoms. Also there is no summation convention on
the Greek subscripts. δ(x − xα) is the Dirac delta function equal to infinity at the
position xα of an atom α and zero elsewhere; its integral over the problem domain is
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one. nA is the number of atoms in ΩA. The internal forces in equation 2 arise from the
interaction of atom α with its neighbors depending on the inter-atomic potential used.
An Embedded atom method (EAM) potential is adopted here [10], although this is not
a limitation of the method presented here. In EAM the total energy Φ of a system of
atoms is obtained as the sum of energies of individual atoms Φα.

Φ =
n

∑

α

Φα (3)

where n is the total number of atoms in the system. Φα is given by

Φα = E(ρα) +
1

2

neigα
∑

β,β 6=α

V (rαβ) (4)

ρα =
neigα
∑

β,β 6=α

Ψ(rαβ) (5)

where ρα is the total electron density at atom α, E(ρα) is the embedding energy
function. rαβ = |xα − xβ| is the distance between the atoms α and β. V (rαβ) is the pair
potential term and Ψ(rαβ) is the electron density function, which have a cutoff distance
in terms of r as defined by the inter-atomic potential. Thus the summation in equations
4 and 5 is over the atoms in a neighborhood of the atom α denoted by neigα. The
internal force fiα acting on an atom α in terms of the EAM potential is given by

fiα =
n

∑

β

∂Φβ

∂diα

(6)

where diα is the displacement of the atom α and

∂Φβ

∂diα

=
∂E

∂ρβ

neigβ
∑

γ,γ 6=β

{

∂Ψ(rβγ)

∂rβγ

∂rβγ

∂diα

}

+
1

2

neigβ
∑

γ,γ 6=β

{

∂V (rβγ)

∂rβγ

∂rβγ

∂diα

}

(7)

Note: Φ(r) and V (r) are represented as a function of the distance r and E(ρ) as a
function of the electron density ρ, both r and ρ being scalar parameters. The function
values are interpolated by a 1-D cubic spline χ(x), where χ(x) denotes Ψ(r) or V (r) or
E(ρ) with x being either r or ρ. Cubic spline function is given by

χ(x) = y(i)+ b(i){x−x(i)}+ c(i){x−x(i)}2 +d(i){x−x(i)}3, ∀x(i) ≤ x < x(i+1) (8)

where x(i) is the ith spline knot position, y(i) is the function value at the knot, b(i), c(i)
and d(i) are the derivative coefficients that construct the spline function. Spline
parameters are obtained through a least square fit to both experimental data and
quantum mechanical force calculations. The optimized parameters that we have used
are available at the website [1].

The motivation for using a blend between the continuum stress and the atomic
force in the interphase ΩI comes from the fact that the continuum stress σij can be
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considered as an equivalent of the Virial stress σ̃ij defined at the atomistic level [35].
The Virial stress σ̃ij evaluated at an atom α is given in terms of the forces between its
neighbors as follows [25]:

σ̃ij =
1

v

neigα
∑

β,β 6=α

riαβfjαβ ; fjαβ =
∂Φβ

∂djα

(9)

where riαβ = xiα − xiβ is the distance vector between the atoms α and β, v is the
volume of the unit cell associated with the atom α. Blending the continuum stress σij is
therefore equivalent to blending the atomistic force fiαβ.

Thus in the interphase ΩI , the equilibrium equation is obtained as follows:

{ΘC(x)σij},j + ΘC(x)bi +
nI
∑

α



{
neigα
∑

β

(

ΘA
αβfiαβ

)

+ ΘA
αbiα}δ(x − xα)



 = 0 x ∈ ΩI (10)

where

ΘA
α = 1 − ΘC(xα)

ΘA
αβ = 1 −

1

2

{

ΘC(xα) + ΘC(xβ)
}

(11)

and nI is the number of atoms in the interphase. The continuum blend function ΘC(x)
is evaluated based on the proximity of the point x ∈ ΩI to the boundaries ΓCI and ΓAI

(figure 1). For instance ΘC(x) = 1 on ΓCI and ΘC(x) = 0 on ΓAI . By defining s ∈ [0, 1]
as a normalized distance in the physical domain from ΓCI to ΓAI , ΘC(s) can be
approximated to be a function of the scalar parameter s. To this end it is convenient to
define the equilibrium equation 10 on the whole problem domain by defining ΘC(x) = 0
on ΩA and ΘC(x) = 1 on ΩC .

There are several different possibilities for choosing ΘC over ΩI . It can be
approximated to coincide with 1-D linear shape function in s. Alternatively a C1

continuous function can be constructed using a cubic polynomial satisfying the
following conditions:

ΘC = 1,
∂ΘC

∂s
= 0 on ΓCI (12)

ΘC = 0,
∂ΘC

∂s
= 0 on ΓAI (13)

In addition to the equilibrium, compatibility needs to be satisfied between the
atomistic and the continuum displacements in some average sense, schematically
denoted as

Λ
{

uC
i (xα) − uA

iα

}

= 0 on ΩI (14)

where Λ is an averaging operator to be defined subsequently. uC
i (xα) is the continuum

displacement at the position xα of an atom α, uA
iα is the displacement of the atom α.
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The strong form of the concurrent AtC coupling method is formulated as: Given
bi : ΩC ∪ ΩI → ℜ, biα : ΩA ∪ ΩI → ℜ, gi : Γgi

→ ℜ, hi : Γhi
→ ℜ, Find uC

i (x) and uA
iα

such that

{ΘC(x)σij},j + ΘC(x)bi +
n

∑

α











neigα
∑

β

(

ΘA
αβfiαβ

)

+ ΘA
αbiα







δ(x − xα)



 = 0 x ∈ Ω (15)

uC
i = gi on Γgi

(16)

σijnj = hi on Γhi
(17)

Λ
{

uC
i (xα) − uA

iα

}

= 0 x ∈ ΩI (18)

with an appropriate constitutive equations and inter-atomic potentials. n = nA + nI is
the total number of atoms in the system. gi and hi are essential and natural boundary
conditions on essential boundary Γgi

and natural boundary Γhi
respectively, where

Γgi
∪ Γhi

= Γ and Γgi
∩ Γhi

= ∅. Note that the equilibrium equation 15 is satisfied
point-wise over Ω, whereas the compatibility equation is defined in an average sense.

The weak form of the equilibrium equation 15 is stated as: Given bi : ΩC ∪ ΩI → ℜ,
biα : ΩA ∪ ΩI → ℜ, gi : Γgi

→ ℜ, hi : Γhi
→ ℜ, Find displacements uC

i (x) ∈ UC
i and

uA
iα ∈ UA

i such that

∫

Ω
wC

i

{

(ΘCσij),j + ΘCbi

}

dΩ +
∫

Ω
wA

iα







n
∑

α





neigα
∑

β

(

ΘA
αβfiαβ

)

+ ΘA
αbiαδ(x − xα)











dΩ = 0

∀wC
i ∈ WC

i , ∀wA
iα ∈ WA

i (19)

Integration by parts of the first term in equation 19 results in

−
∫

Ω
wC

i,jΘ
Cσij dΩ +

∫

Γhi

wC
i ΘChi dΓ +

∫

Ω
wC

i ΘCbi dΩ

+
∫

Ω

n
∑

α

wA
iα





neigα
∑

β

(

ΘA
αβfiαβ

)

+ ΘA
αbiα



 δ(x − xα) dΩ = 0 (20)

The weak compatibility Λ is defined as follows:

Λ
(

uC
i (xα) − uA

iα

)

=
∫

ΩI
λi(x)

nI
∑

α

{

uC
i (xα) − uA

iα

}

δ(x − xα) dΩ = 0 ∀λi ∈ H−1 (21)

UC
i and WC

i are continuum function spaces defined as follows:

UC
i =

{

uC
i |u

C
i ∈ H1, Λ

(

uC
i (xα) − uA

iα

)

= 0 on ΩI , uC
i = gi on Γgi

}

(22)

WC
i =

{

wC
i |w

C
i ∈ H1, Λ

(

wC
i (xα) − wA

iα

)

= 0 on ΩI , wC
i = 0 on Γgi

}

(23)

where H−1 in equation 21 and H1 in equations 22, 23 denote Hilbert spaces [16]. UA
i

and WA
i belong to the discrete phase space of the atomistic system given by

UA
i =

{

uA
iα|u

A
iα ∈ ℜn, Λ

(

uC
i (xα) − uA

iα

)

= 0 on ΩI
}

(24)

WA
i =

{

wA
iα|w

A
iα ∈ ℜn, Λ

(

wC
i (xα) − wA

iα

)

= 0 on ΩI
}

(25)

Weight functions wC
i and wA

iα are related through the compatibility condition.
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2.2 Discretized equations of equilibrium and constraints

A finite element discretization of the problem domain Ω is denoted by Ωh. The
continuum displacement and test functions defined over ΩC ∪ ΩI are discretized using
C0 continuous finite element shape functions. The discretized displacement is denoted
by uh

i ∈ Uh
i and the discretized test function is denoted by wh

i ∈ Wh
i . The spaces Uh

i

and Wh
i are given by

Uh
i =

{

uh
i |u

h
i = NBdC

iB, Λh
(

uh
i (xα) − uA

iα

)

= 0 on ΩhI
, uh

i = gi on Γh
gi

}

(26)

Wh
i =

{

wh
i |w

h
i = NBaC

iB, Λh
(

wh
i (xα) − wA

iα

)

= 0 on ΩhI
, wh

i = 0 on Γh
gi

}

(27)

where NB are the finite element shape functions associated with the finite element nodes
B, dC

iB are the nodal degrees of freedom and aC
iB are the nodal multipliers corresponding

to test functions. Summation convention over repeated index B is employed.

The discrete compatibility equation is constructed by discretizing λ(x) ∈ H−1 using
piecewise constant shape functions defined to be constant over the finite element

domains Ωe ∈ ΩhI

λh
i (x) =

∑

Ωe∈ΩhI

N eζe
i (28)

where

N e =

{

1 on Ωe

0 elsewhere
(29)

Substituting equations 28 and 29 into the equation 21 we obtain

∑

Ωe∈ΩhI

∫

Ωe
ζe
i

nI
∑

α

{

uC
i (xα) − uA

iα

}

δ(x − xα) dΩ = 0 (30)

Requiring the arbitrariness of ζe
i yields the following discrete compatibility equation for

every element Ωe, ne being the number of atoms in an element Ωe:

Λh
{

uh
i (xα) − uA

iα

}

=
ne
∑

α

{

NB(xα)dC
iB − uA

iα

}

= 0 ∀Ωe (31)

The above equation 31 yields number of constraint equations equal to the number of

spatial dimension for each finite element Ωe ∈ ΩhI
. From equation 31 the degrees of

freedom of one atom in Ωe can be expressed in terms of the degrees of freedom of the
finite element Ωe and the degrees of freedom of the remaining atoms in the element.
Note that at least one atom has to be positioned with an element Ωe in the interphase.

Discretized continuum weight functions wh
i are related to atomistic weight functions

through discretized compatibility equation 30. By constructing the compatibility

equations such that the atoms within an element Ωe ∈ ΩhI
are enslaved by the

continuum degrees of freedom of that element (as in the case of the local
quasicontinuum method), discretized continuum weight functions wh

i computed at the
position of atoms coincide with the atomistic weight functions wA

iα.

8



Let diP be the independent degrees of freedom in a concurrent problem

formulation1. Finite element degrees of freedom over ΩhC
∪ ΩhI

are denoted by dC
jD.

Master (independent) atomistic degrees of freedom over ΩA ∪ ΩhI
are denoted by dA

jα.
Let TC

jDiP and TA
jαiP be the transformation matrices consisting of zeros and ones such

that
dC

jD = TC
jDiP diP ; dA

jα = TA
jαiP diP (32)

TC
jDiP and TA

jαiP are used for writing convenience that allow the system of equations to
be written in terms of total independent degrees of freedom for the whole problem diP

rather than writing partitioned system of equations in terms of partitioned degrees of
freedom dC

jD and dA
jα. Similarly the multipliers of the test function are related as

aC
jD = TC

jDiP aiP ; aA
jα = TA

jαiP aiP (33)

where aiP are the global independent multipliers of the test function, aC
jD and aA

jα are
the multipliers of the test function corresponding to the degrees of freedom dC

jD and dA
jα.

The discretized system of equations shown below is obtained by using the equations
26 to 33 in the weak form equilibrium equation 20

−
∫

Ωh
TC

iAkP NA,jΘ
Cσij dΩ +

∫

Γh
hi

TC
iAkP NAΘChi dΓ

+
∫

Ωh
TC

iAkP NAΘCbi dΩ +
nm
∑

α

TA
iαkP







neigα
∑

β

(

ΘA
αβfiαβ

)

+ ΘA
αbiα







= 0 (34)

where nm is the number of independent atoms. Equation 34 is a nonlinear system of
algebraic equations for the unknown continuum and independent atomistic degrees of
freedom, schematically written in terms of residuals as

rkP = 0 (35)

This equation can be solved by the Newton method for each load increment. The
tangent stiffness matrix is given by

KkPmQ =
∂rkP

∂dmQ

≡
∂ṙkP

∂ḋmQ

(36)

Superimposed dot in equation 36 represents the material time derivative. Assuming no
follower forces and no body forces simplifies equation 34 to

rkP = −
∫

Ωh
TC

iAkP NA,jΘ
Cσij dΩ +

nm
∑

α

TA
iαkP







neigα
∑

β

(

ΘA
αβfiαβ

)







= 0 (37)

1Subscripts P , Q, R, etc. are used to denote global degrees of freedom (combined atomistic and
continuum), where as subscripts A, B, C, D, etc. are used to denote the finite element nodal degrees of
freedom
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Consistent linearization of the first term of the tangent stiffness matrix in equation 37
yields

ṙ
(1)
kP =

d

dt

{

∫

Ωh
TC

iAkP

∂NA

∂xj

ΘCσij dΩ

}

=
∫

Ωh
0

TC
iAkP

∂NA

∂XI

ΘC d

dt

{

∂XI

∂xj

σijJ

}

dΩ0 (38)

Ω0 denotes the initial or undeformed configuration, XI is the initial position with big
Roman subscripts denoting the coordinates in the initial configuration. ΘC is expressed
as a function of XI .

∂XI

∂xj
is the inverse of the deformation gradient tensor. J is the

determinant of the Jacobian such that dΩ = JdΩ0. Simplification of the derivative
terms in equation 38 gives

ṙ
(1)
kP =

∫

Ωh
TC

iAkP NA,jΘ
C

{

σ̇ij + (σijδkl − σilδjk)u̇
C
k,l

}

dΩ (39)

Linearization of the Cauchy stress depends on the choice of material model and the
material and rotational stress update. Details can be found in references [4][36]. The
term in parenthesis in equation 39 can be expressed as

σ̇ij + (σijδkl − σilδjk)u̇
C
k,l = Lijklu̇

C
k,l = LijklNB,lḋ

C
kB = LijklNB,lT

C
kBnRḋnR (40)

where Lijkl depends on the material model and algorithmic parameters. By
substituting equation 40 into equation 39 it can be seen that the resulting tangent
stiffness matrix is symmetric if Lijkl has a major symmetry.

Consistent linearization of the second term of the tangent stiffness matrix in
equation 37 yields

ṙ
(2)
kP =

nm
∑

α

TA
iαkP

neigα
∑

β

(

ΘA
αβ

∂

∂dA
jδ

fiαβ

)

ḋA
jδ =







nm
∑

α

TA
iαkP

neigα
∑

β

(

ΘA
αβ

∂

∂dA
jδ

fiαβ

)

TA
jδnR







ḋnR

(41)
∂

∂dA
jδ

fiαβ can be obtained by differentiating equation 6 as follows 2:

∂β

∂djδ

∂Φ

∂diα

=
∂2

∂ρ2
β





neigβ
∑

γ,γ 6=β

{

∂Ψ(rβγ)

∂rβγ

∂rβγ

∂djδ

}









neigβ
∑

γ,γ 6=β

{

∂Ψ(rβγ)

∂rβγ

∂rβγ

∂diα

}





+
∂E

∂ρβ





neigβ
∑

γ,γ 6=β

{

∂2Ψ(rβγ)

∂r2
βγ

∂rβγ

∂djδ

∂rβγ

∂diα

+
∂Ψ(rβγ)

∂rβγ

∂2rβγ

∂djδdiα

}





+
1

2





neigβ
∑

γ,γ 6=β

{

∂2V (rβγ)

∂r2
βγ

∂rβγ

∂djδ

∂rβγ

∂diα

+
∂V (rβγ)

∂rβγ

∂2rβγ

∂djδdiα

}



 (42)

2.3 Blend functions over a discretized domain

The continuum sub-domain ΩC and the interphase sub-domain ΩI are discretized into a
finite element mesh with tetrahedral elements in 3D. We consider three different
scenarios of the blend functions:

2The subscript δ used to denote an atom is not to be confused with the Dirac delta function
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1. Piecewise constant blend function: In this scenario, a constant value for ΘC

is assigned for each Ωe ∈ ΩhI
based on the normalized distance of the centroid of

Ωe from ΓCI in the figure 1. ΘA = 1 − ΘC is a constant for the atoms bounded by

an element Ωe ∈ ΩhI
. Piecewise constant blend is the simplest and does not have

consistency problem discussed in the next section 2.4 and in [3]. However
handling of ghost forces discussed with figure 1 will be difficult for a piecewise
constant blend.

2. Piecewise linear blend function: Local coordinates of the parent domain of
tetrahedral mesh elements is used to construct linear blend function. With
u = 1 − r − s − t linear blend function is of the form

ΘC(r, s, t, u) = A1r + A2s + A3t (43)

Constants A1, A2 and A3 are determined based on the normalized distance of the
vertices from ΓCI shown in the figure 1. Piecewise linear blend is a common
choice.

3. Piecewise cubic blend function: A cubic blend function is defined in the local
coordinates of the parent domain of tetrahedral mesh elements. It is constructed
from cubic Bézier patch for a tetrahedron analogous to the Bézier triangle [14]. A
cubic Bézier tetrahedron is defined as

ΘC(r, s, t, u) =
∑

|a|=3

{

n!

a!b!c!d!
rasbtcudB(abcd)

}

, |a| = a + b + c + d = 3 for cubic

(44)
where a, b, c and d are the indices of the control points corresponding to r, s, t
and u as shown in the figure 2. The control points B(abcd) can be computed by

r

s

t

B

D

(2100)

(1200)

(0300)

(0210)

(0120)

(0030)

 C

A (1002)       (2001)    (3000)

(2010)

(1020)

(0021)

(0012)

(0003)

Figure 2: Parent tetrahedron with indices of control points

enforcing ΘC(r, s, t, u) to coincide with the specific 1-D blending functions like
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ΘC(s) = 1 − 3s2 + 2s3 along the edges of the parent tetrahedra. Piecewise cubic
blend function has the correct value with zero slope at the boundary of the
interphase sub-domain ΩI .

2.4 Discussion on the method

A comparison of AtC with the similar existing methods is discussed in this section. An
overlapping domain between the continuum and atomistic sub-domains has been used
in the past to couple continuum and atomistic models. In the paper by Curtin and
Miller [8] a review of different continuum-atomistic concurrent methods is given with an
emphasis on the generalization of atomistic/continuum transition region. Details of the
transition region are discussed for the quasicontinuum method [32][22], the Coupling of
Length Scales (CLS) method [6][2], the Finite Element Atomistics (FEAt) method [19]
and Coupled Atomistics and Discrete Dislocation (CADD) method [29] under a unified
generic transition model as shown in figure 2 of [8]. It is evident from the discussion of
transition region in [8] that all the methods discussed in there have a continuum mesh
refined to the level of atomic spacing and the continuum nodes coincide with the atoms
in the transition region. This is not necessary for the AtC method presented here as
shown in the figures 4, 6 and 8. In fact this may be a tedious extra work in an adaptive
framework where the atomistic domain is not known a priori. The bridging domain
method [5][34] and the multiscale modeling method of Luan et.al [20] also eliminated
the restriction of continuum mesh refinement down to atomistic spacing and
coincidence of atoms with continuum nodes in the transition region.

Among the methods discussed in [8] some of the methods like the quasicontinuum
method [32][22], CLS method [6][2] have a well defined energy functional that
approximates the potential energy due to deformation of the combined
continuum-atomistic regions. The bridging domain method of Belytschko et.al [5][34]
also defines a Hamiltonian for the complete problem domain, in which a linear scalar
parameter is used to obtain a linear combination of the atomistic and the continuum
Hamiltonians in the overlap region.

In the FEAt method [19] the solution is obtained over sub-domains coupled through
compatible boundary conditions. A similar approach adopted in [9] is in the spirit of
Schwarz overlapping method, which has two conditions for uniqueness and convergence
(see for instance [7]). These are (i) convexity and (ii) use of identical mathematical
model in the overlapping regions. In the absence of (i) there is no guarantee that the
residuals vanish as the compatibility is enforced.

The method presented here minimizes residuals of equation 35 to bring unbalance
forces to zero during the solution procedure. The solution is obtained in one step for
the entire domain without using the interphase to transfer information from the
continuum to the atomistic domain and vice-versa as part of the iterative solution (as
in [9]). In problems in which a global energy can be defined, this is equivalent to the
minimization of the effective system energy. The present method can be used to obtain
solutions in situations in which devising an energy functional for the entire system may
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not be possible, as for example in the presence of irreversible processes. Use of blending
functions ΘC(x) and ΘA(x) leads to an approximation of the physically meaningful
energy in the overlap interphase sub-domain. With regard to the energy functional that
leads to the method presented here, it is straightforward to see that the AtC blended
model minimizes the following functional:

∫

ΩC∪ΩI
ΘC(x) |∇u|2 dΩ +

1

2

n
∑

α

neigα
∑

β

ΘA
αβΦαβ (45)

where Φαβ is the energy associated with the interaction between atoms α and β.

The atomistic blend function ΘA is to be handled carefully due the nonlocal nature
of the atomistics. Analyses of the AtC methods in [3] discusses the inconsistencies that
can arise if ΘA is not treated carefully. To fix ideas consider a 1-D case of two
interacting atoms in ΩI depicted in figure 3. If the blend functions in ΩI are defined in

AIΓΓCI

Θ C
     = 1

Θ C
     = 0

α β

Figure 3: Consistency check for AtC

the traditional way as ΘA(x) = 1 − ΘC(x) either the energy blend or the force blend
leads to the following inconsistency. For instance, force at the position of the atom α is
{

1 − ΘC(xα)
}

fiαβ and that at the position of the atom β is
{

1 − ΘC(xβ)
}

fiαβ. Since

ΘC(xα) 6= ΘC(xβ) in general,
{

1 − ΘC(xα)
}

fiαβ 6=
{

1 − ΘC(xβ)
}

fiαβ, which violates
the Newton’s third law and causes non-symmetric stiffness matrix. Incidentally a
constant blend of ΘC = ΘA = 0.5 used by Broughton et.al [6][2] is consistent in this
sense, but lacks the gradual atomistic-to-continuum transition. Any non-constant blend
function needs to be treated properly for consistency. By defining ΘA

αβ as in equation 11
we obtain force at the position of atom α to be equal to the force at the position of
atom β satisfying the Newton’s third law and giving rise to symmetric stiffness matrix.
It is noted that if the thickness of the interphase sub-domain is reduced to zero, one
recovers the residual definitions of FEAt and CADD methods [30].

In addition to equilibrium (equations 15-17), a compatibility is enforced (equation
18) between the continuum solution and the atomistic solution. This is similar to the
constraints imposed by the Lagrange multiplier or augmented Lagrangian method in [5]
and [34]. However the compatibility in equation 18 allows for a flexibility in imposing
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the constraints between the continuum solution and atomistic solution. By controlling
the discretization of λi(x) in the equation 28 we can control the strength of the
coupling, which will be studied in detail in a continuing work. In the hybrid multiscale
modeling method of Luan et.al only the atoms at the boundary between the interphase
sub-domain and continuum sub-domain are constrained according to the continuum
solution, while the rest of the atoms in the interphase sub-domain are unconstrained.

3 Patch tests

A series of patch tests are conducted to verify the problem formulation and its
implementation. Figure 4 shows the hybrid atomistic-continuum domain considered for
the patch tests. A cube with an atomistic sub-domain ΩA at the center and surrounded

Atomistic domain

Overlap interphase

Continuum domain

Ω

Ω

Ω

A

I

C

Section view

Figure 4: Hybrid atomistic-continuum domain for patch tests

by an interphase sub-domain ΩI is subjected to 6 constant strain modes (3 normal
strain modes and 3 shear strain modes) and 6 rigid body modes (3 translation and 3
rotation) one at a time. The problem domain Ω is discretized with a tetrahedral finite

element mesh. The finite element nodes only in ΩhC
∪ ΩhI

contribute to the continuum
residual equations. The EAM potential for Aluminum [13] is chosen for the atomistics
and a linear elastic constitutive relationship consistent with the EAM is chosen for the
continuum [9]. The constant strain modes and the rigid body modes are imposed
through the appropriate Dirichlet boundary conditions to the continuum. The example
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consists of 13,075 total degrees of freedom out of which 12,147 were atomistic degrees of
freedom and 928 were continuum degrees of freedom.

Figure 5 shows that the displacements solved by the AtC method is consistent with
the imposed strain modes for the case of a normal strain mode εxx = 0.001 and a shear
strain mode εxy = 0.001. These strains are well within the linear elastic regime of
stress-strain response of the Aluminum lattice. The displacements were consistent for
the other constant strain modes and rigid body modes as well. Energy density is
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Figure 5: Displacement along X direction

calculated for each element in the continuum sub-domain ΩhC
, for each atom in the

atomistic sub-domain ΩA and at each atom location in the overlap interphase ΩhI
. It

was found to be accurate within a tolerance of the order of 10−8MPa. Although the
continuum energy density and atomistic energy density are accurate to a tolerance of
the order of 10−10 − 10−12 individually, a conversion factor from the atomistic unit of
the energy density, eV/A3 to that of the continuum, MPa causes this apparent loss in
accuracy. Table 1 shows the energy density for different strain modes. The energy
density for the rigid body modes calculated by AtC is zero as expected. Using different
blend functions discussed in the section 2.3 in the overlap interphase ΩI of the patch
test domain (Figure 4) did not affect the patch test results.

4 Numerical examples

Two numerical examples are illustrated in this section. The first one is
nano-indentation of a thin film and the second is a nano-void subjected to hydrostatic
loading. The continuum is linear elastic. The EAM potential of the Aluminum given by
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Table 1: Strain energy density by AtC formulation

Strain modes Strain energy density in MPa
εxx = 0.001 0.0374602
εyy = 0.001 0.0374602
εzz = 0.001 0.0374602
εxy = 0.001 0.0734003
εyz = 0.001 0.0734003
εyz = 0.001 0.0734003

Ercolessi and Adams [13] is used for the atomistics and the elastic constitutive
parameters chosen for the continuum are consistent with the EAM potential. A finite
element discretization of the problem domain is constructed such that the mesh is finer
in the regions where stresses are expected to be high. A hybrid atomistic-continuum
concurrent model is constructed a priori by replacing the mesh elements in the regions
where stresses are expected to be high with an atomistic sub-domain. An adaptive
scheme by which the atomistic regions are selected based on the underlying fields will
be presented in a subsequent publication. In the adaptive methods paper there is also a
discussion on the size of the elements in the interphase sub-domain ΩI . Although the
entire problem domain is discretized with a finite element mesh for the sake of
simplicity, only the finite element nodes in the sub-domain ΩC ∪ ΩI contribute to the
continuum residual in the equation 34. Equation 35 was solved by a nonlinear
multi-variable minimization library based on Conjugate Gradient algorithm.

Crystal defects such as dislocations that are formed as a result of loading are
captured by the atomistic model. Centrosymmetry calculation [18] is used to detect the
atoms in the dislocation core and these atoms are plotted to show the dislocation core
structure. The centrosymmetry parameter for each atom is defined as follows:

P =
6

∑

α=1

|Rα + Rα+6|
2 (46)

where Rα and Rα+6 are the vectors corresponding to the six pairs of opposite nearest
neighbors in the FCC lattice. The centrosymmetry parameter is zero for the atoms in a
perfect crystal. For P = 0.5 − 4.0 the atom is considered to be located at a dislocation
core [18]. Centrosymmetry criteria has been used to show dislocation structures in [21].

4.1 Nano-indentation of a thin film

Indentation of a film of thickness ∼ 30 nm placed on a rigid substrate is illustrated in
this section. The indenter is rectangular in shape and ∼ 18.7 A wide. The indenter as
well as the film are considered to be infinite in the out of plane X direction, thus a
plane strain condition exists in the Y − Z plane (Figure 6). Indentation direction is
−Z. Homogeneous Dirichlet boundary condition in Z is imposed on the bottom face of
the film that rests on the substrate. Homogeneous Dirichlet boundary condition in Y is
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imposed on the left and right face of the continuum problem domain. Indenter load is
applied quasi-statically through Dirichlet boundary condition by moving the indenter
by 0.05 A for each load step. Thus the indenter corresponds to a perfectly rigid
indenter. A 3D lattice structure is maintained by imposing periodic boundary
conditions in X direction for the atomistic model. Crystallographic orientation chosen
for the lattice (shown in the left picture of figure 6) is such that the dislocations
generated from the corners of the indenter move straight down into the material.
Figure 6 shows a concurrent model for the problem.

Atoms moving with the indenterX Y

Z

<111>

<110>

<112>

Indenter direction

Atomistic domain

Interphase domain

Continuum domain Ω

Ω

ΩA

I

C

Hybrid concurrent model Zoomed view

Figure 6: Hybrid atomistic-continuum concurrent model for nano-indentation

Dislocation nucleation is seen beginning from an indenter displacement of 1.7 A.
Figure 7 shows a plot of the total energy of the domain versus indenter displacement.
The curve is flat for the first 20 load steps due to a small amount of surface relaxation
that happens alongside indentation. The load steps at which dislocation nucleation
occurs in the AtC model and the atomistic reference solution are the same except for
the last two. The load steps at which the last 2 dislocations nucleate differ between the
two models is due to the constraining effect of the finite atomistic region in AtC on
defect nucleation. Thus the AtC model solution agrees well with the atomistic reference
solution. Results obtained here also qualitatively agree with the nano-indentation test
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results presented in [31] although the exact numbers in terms of the indenter
displacement at the first dislocation nucleation do not. This is due to difference in
indenter size and inter-atomic potential.
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Figure 7: Energy comparison between atomistic reference solution and the concurrent
model solution

The AtC model (figure 6) consists of 58,359 total degrees of freedom to solve for.
58,005 are the atomistic degrees of freedom and 354 are the continuum degrees of
freedom. Thus the atomistic degrees of freedom dominate the calculations. The L2
norm of the residuals of equation 35 was of the order of 10−5 per degree of freedom at
the end of each load step. The atomistic model of the reference solution consists of
173880 atomistic degrees of freedom.

4.2 Nano-void subjected to hydrostatic tension

A void of size ∼ 50 nm in diameter at the center of a cube of side ∼ 500 nm is
subjected to hydrostatic tension. The load is applied quasi-statically in small
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increments (0.375 A) through Dirichlet boundary conditions imposed on the outer faces
of the cube. Problem simulation consists of solving the problem at each incremental
load step. The simulation of a nano-void subjected to hydrostatic tension has been used
to study nano-void growth and cavitation [21] and is also relevant for nano-porous
materials. Figure 8 shows a concurrent model for the problem along with the
crystallographic orientation.

Hybrid concurrent model

X Y

Z <001>

<100>

<010>

Atomistic domain

Interphase domain

Continuum domain

Ω

Ω

Ω

A

I

C

Zoomed mid-section view of
the concurrent model

Figure 8: Hybrid atomistic-continuum concurrent model for Void

The dislocation loops observed at 18th load step around the void are shown in the
left picture of figure 9. With the increase in load, dislocation loops grow and quickly
react to form Lomer-Cottrell junctions [17]. These junctions result in stacking fault
tetrahedra around the void as shown in the right portion of the figure 9, which plots the
atoms along the edges of the tetrahedra. Results of the fully atomistic simulation at the
corresponding load steps are shown in the figure 10. The symmetry of the resulting
dislocation configuration is due to the crystal symmetry. Results obtained are
qualitatively comparable with that presented in [21].

Figure 11 shows a comparison of the energy plots between the fully atomistic
reference solution and the concurrent model (figure 8) solution. The energy of the
atoms within the inter-atomic cutoff distance from a free surface is subtracted from the
model energy to eliminate the energy fluctuations due to surface relaxation. The linear

19



L oad s tep 18

Dis location loops nucleated from void s urface

X

Y

Z X

Y

Z

L oad s tep 20

S tacking-fault tetrahera

Figure 9: Dislocations in the Void problem - concurrent model solution

elastic strain energy of the model is also subtracted from the total energy of the model
so that the fluctuation in the energy due to nucleation and growth of dislocation loops
is clearly distinguishable. Different events noticed during the simulation are also
marked in figure 11. Stacking fault tetrahedra shown in the right side of the figures 9
and 10 occur between the load steps 20 and 21 with an associated drop in the energy as
shown in figure 11.

The AtC model (figure 8) consists of 331,801 total degrees of freedom. 328,494 are
the atomistic degrees of freedom and 3307 are the continuum degrees of freedom. Once
again the atomistic degrees of freedom constitute a majority of calculations. The L2
norm of the residuals of equation 35 was of the order of 10−6 per degree of freedom. The
atomistic simulation for a reference solution consists of 1,316,412 degrees of freedom.

5 Closing remarks

A concurrent atomistic to continuum (AtC) coupling method is formulated based on a
blending of the continuum stress and the atomistic force in the equilibrium equation.
The problem domain is decomposed into a continuum sub-domain, an atomistic
sub-domain and an overlap interphase sub-domain with a blended atomistic-continuum
description. Three different blend functions are considered. Compatibility between the
atomistic solution and the continuum solution is imposed within the interphase in a
weak sense. Patch test results verified the problem formulation and its implementation.
A nano-indentation problem and a nano-void subjected to hydrostatic tension are
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Figure 10: Dislocations in the Void problem - atomistic reference solution

solved by the AtC method and the results are compared with the results of fully
atomistic simulations. Further investigation of the blend functions and weak
compatibility constraints is an ongoing work. The AtC method is the basis of an
automated adaptive concurrent multiscale procedure currently under development.
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